
Caroline Praetzel, Tilt remote control:

The goal for my final project was to build a tilt remote to wirelessly control my robot’s
motion via my own physical motion. This project required a RF antenna to transmit X & Y
accelerometer coordinates to my robot’s Arduino, which were then used to create conditional
statements to turn on corresponding direction control pins.

Figure 3: MPU6050 accelerometer, nRF24L01 transceiver

Supplies Needed:
MPU6050 Accelerometer/gyroscope.
NRF24L01 RF Transceiver module (x2)
Arduino Nano Every (x2)
9V Battery
10 μF capacitor (x2)
Mini Breadboard

Links:
RF tutorial:
https://howtomechatronics.com/tutorials/arduino/arduino-wireless-communication-nrf24l01-tutor
ial/
Project inspiration: https://www.youtube.com/watch?v=RTJ33EWmTRI&t=11s
MPU6050 Library: https://goo.gl/uHB7jX
nRF24L01 Library: RF24 by TMRh20 available in Arduino library manager
I2Cdev Library: https://goo.gl/Ke1Wg1

Upon receiving the supplies, I first completed an online tutorial for the NRF24L01
transceiver so that I could gain familiarity with the necessary Arduino libraries and ensure that
my devices could communicate with each other. This tutorial was very helpful, and allowed me

9



to send a simple string message, “Hello world” message between the RF chips. After completing
this I knew my modules were not defective.

Remote Transmitter:
The RF module uses a Serial Peripheral Interface (SPI) (Figure 4). A 10 μF capacitor

should first be soldered to between VCC and GND of the RF module; I initially skipped this step
and was experiencing lots of difficulty maintaining communication until I added in this bypass
capacitor. The Arduino Nano has designated MISO/MOSI/SCK pins, and the CE/CNS can be
connected to any digital pins. The logic voltage for these pins can be 5V, whereas the operating
voltage (VCC) is 1.9V-3.6V, so I connected the module VCC to the 3.3V Arduino output pin.

The MPU6050 has a 3-axis accelerometer & 3 axis-gyroscope, but I only used the X & Y
accelerometer values to obtain left/right/forward/backward motion options. I connected the SCL
& SDA to the corresponding Arduino pins A5 & A4, respectively. I then connected the INT pin
to D2, and VCC to the Arduino’s 5V pin.

Figure 4: Remote transmitter schematic

10



I then made these connections using jumper wires on a mini breadboard, and powered
them with the 9V battery in the ECEN 2270 kit. Finally, I mounted the entire breadboard to an
extra nintendo switch remote base that I had at home, and taped the antenna to the front. The
overall design was quite messy, and an obvious improvement to this project would be using a
protoboard or PCB for a cleaner look.

Figure 5: Final remote design

11



Robot Receiver:
The SPI connections between the RF receiver and the Arduino were the same as the transmitter. I
also added connections to the four existing direction control nodes, and also to the two low pass
filters going to each Vref node in the compensator circuits. I then mounted the antenna at the rear
of the robot with tape.

Figure 4: Receiver schematic

Conclusions:
Εventually I ended up getting the tilt controller to work for my robot, but overall this

project was very challenging for me. I really learned how complicated it can be to try to pinpoint
what’s not working when you have multiple devices interacting, and my remote still had barely
any devices, just three! I am glad that I took the time to make sure each device was working
independently before trying to get them all working together, because I think I would have been
completely stuck if I just built the whole remote, ran the code, and nothing happened. After
struggling for a few weeks, finally getting this thing to work was one of the most satisfying
project experiences I have had in college!

12



Initially, I was able to send the “Hello world” string between antennas, and print the
accelerometer data to the serial module, but I could not get the gyro and antennas working at the
same time. The coding was the hardest portion for me, I had to find alternative Arduino libraries
when the ones I was initially using were not working. I don’t have much experience coding in C
or Arduino, so I was struggling with editing the code to work with the new libraries.

If I had more time, I would have really liked to improve the usability of the controller.
While the remote completed my goal of causing the robot to move, it was not the easiest to
control. I would want to continue to finetune the numeric values of the conditional statements so
that the sensitivity of each directional motion matched. I also think it would have been cool to
add portions into the code where a further angled tilt increased the robot’s speed by changing the
associated Vref value. One last idea I had was to experiment with using the X-Z accelerometer
coordinates instead of X-Y, since the Z rotation is more similar to spinning a steering wheel.

Transmitter code appendix:

//Add the necessary libraries
#include <SPI.h> //SPI library for communicate with the nRF24L01+
#include "RF24.h" //The main library of the nRF24L01+
#include "Wire.h" //For communicate
#include "I2Cdev.h" //For communicate with MPU6050
#include "MPU6050.h" //The main library of the MPU6050
#include <nRF24L01.h>
#include "String.h"

//Define the object to access and control the Gyro and Accelerometer (We don't use the Gyro data)
MPU6050 mpu;
int16_t ax, ay, az;
int16_t gx, gy, gz;

//Define packet for the direction (X axis and Y axis)
int data[2];

//Define object from RF24 library - 7 and 8 are a digital pin numbers to which signals CE and CSN are
connected.
RF24 radio(7,8);

//Create a pipe addresses for the communicate
const byte address[6] = "00001"; //needs to match receiver address

void setup(void){
Serial.begin(9600);
Wire.begin();
mpu.initialize(); //Initialize the MPU object
radio.begin(); //Start the nRF24 communicate
radio.openWritingPipe(address);
radio.setPALevel(RF24_PA_MIN);
radio.stopListening(); //Sets the address of the receiver to which the program will send data.

}

void loop(void){

//With this function, the acceleration and gyro values of the axes are taken.

13



//If you want to control the car axis differently, you can change the axis name in the map command.
mpu.getMotion6(&ax, &ay, &az, &gx, &gy, &gz);
// Serial.println(ax); // only for testing

//In two-way control, the X axis (data [0]) of the MPU6050 allows the robot to move forward and
backward.

//Y axis (data [0]) allows the robot to right and left turn.
data[0] = map(ax, -17000, 17000, 300, 400 ); //Send X axis data to range between 300-400
data[1] = map(ay, -17000, 17000, 100, 200); //Send Y axis data to range between 100-200

//For testing, make sure that values printed to serial monitor change when remote is tilted
Serial.print("Data 1: ");
Serial.println(data[0]);
Serial.print("Data 2: ");
Serial.println(data[1]);

radio.write(&data, sizeof(data)); //send X-Y data via radio address
delay(100); // update 10 times per second

}

Receiver code appendix:

//Add the necessary libraries
#include <SPI.h> //SPI library for communicate with the nRF24L01+
#include "RF24.h"
#include <nRF24L01.h> //The main library of the nRF24L01+

//Define enable pins of the Motors
const int enbA = 3; //Left Vref
const int enbB = 5; //right Vref

//Define direction control pins of the Motors
const int IN1 = 2; //Right Motor (+)
const int IN2 = 4; //Right Motor (-)
const int IN3 = 9; //Left Motor (+)
const int IN4 = 10; //Left Motor (-)

//Define variable for the motors speeds
//This way you can synchronize the rotation speed difference between the two motors
//Set both to 150 if no speed difference between motors
int RightSpd = 150;
int LeftSpd = 150;

//Define object from RF24 library - 7 and 8 are digital pin numbers to which signals CE and CSN are
connected
RF24 radio(7,8); // radio CE CSN pins

//Create a pipe addresses for the communicate
const byte address[6] = "00001"; //can change to any address shared with transmitter

void setup(){
//Define the motor pins as OUTPUT

14



pinMode(enbA, OUTPUT);
pinMode(enbB, OUTPUT);
pinMode(IN1, OUTPUT);
pinMode(IN2, OUTPUT);
pinMode(IN3, OUTPUT);
pinMode(IN4, OUTPUT);

Serial.begin(9600);
radio.begin(); //Start the nRF24 communicate
radio.openReadingPipe(0, address); //Search for signal from defined address
radio.setPALevel(RF24_PA_MIN); //Sets the address of the transmitter to which the program will

receive data.
radio.startListening(); //Starts receiving
}

void loop(){
if (radio.available()){

int data[2]; //Define packet for the direction (X axis and Y axis)
radio.read(&data, sizeof(data)); //read X-Y data
Serial.print("Data 1: "); //Print X-Y data to seriel monitior, this is helpful for testing
Serial.println(data[0]); //X-data
Serial.print("Data 2: ");
Serial.println(data[1]); // Y-data

if(data[0] > 380){ // X-condition for forward motion, change to alter sensitivity
//forward
analogWrite(enbA, RightSpd); //set Vref
analogWrite(enbB, LeftSpd); //set Vref
digitalWrite(IN1, HIGH); //right forward on
digitalWrite(IN2, LOW);
digitalWrite(IN3, HIGH); //left forward on
digitalWrite(IN4, LOW);
// Serial.println("1"); // for testing only
}

if(data[0] < 310){ // X-condition for backward motion, change to alter sensitivity
//backward
analogWrite(enbA, RightSpd); //set Vref
analogWrite(enbB, LeftSpd); //set Vref
digitalWrite(IN1, LOW);
digitalWrite(IN2, HIGH); //right backward on
digitalWrite(IN3, LOW);
digitalWrite(IN4, HIGH); //left backward on
// Serial.println("2"); //for testing only
}

if(data[1] > 180){ // Y-condition for left motion, change to alter sensitivity
//left
analogWrite(enbA, RightSpd); //set Vref
analogWrite(enbB, LeftSpd); //set Vref
digitalWrite(IN1, HIGH); //right forward on
digitalWrite(IN2, LOW);
digitalWrite(IN3, LOW);
digitalWrite(IN4, HIGH); // left backward on
// Serial.println("3"); //for testing only
}

if(data[1] < 110){ // Y-condition for left motion, change to alter sensitivity

15


